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Heat transfer measurements have been made with an internally heated disc of 950 mm 
diameter rotating at speeds up to 3000 r/min in air. Tests were conducted for four different 
radial temperature profiles: in three, the temperature increased with radius; in the fourth, it 
decreased. Local and average Nusselt numbers were determined from the numerical 
solutions of Laplace's equation (using the measured heat input and surface temperatures as 
boundary conditions) and from fluxmeters embedded in the surface of the disc. Over most 
of the disc surface, and for most of the tests, these experimentally measured Nusselt 
numbers were in reasonable agreement with values obtained from existing solutions of the 
energy integral equation for turbulent flow over a free disc. Having validated the 
experimental technique on the free disc, we use it in Part 2 to study the heat transfer inside a 
rotating cavity. 
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I n t r o d u c t i o n  

A rotating disc provides an idealized model with which to study 
the flow and heat transfer that occur inside the rotors of 
turbomachinery (see Ref. 1). As shown in Figure 1, the gas 
turbine provides many examples of rotating-disc systems: a 
turbine disc rotating close to a stationary casing (the "rotor- 
stator system") or two corotating compressor discs sealed at 
their periphery (the "rotating cavity") are just two such cases. 
However, the most fundamental rotating-disc system is the "free 
disc": a disc rotating in an otherwise quiescent environment. 
Aspects of free-disc flow appear in other rotating-disc systems, 
and a large amount of theoretical and experimental work has 
been devoted to the fluid dynamics and heat transfer of such 
flows. Since there are reasonable experimental correlations and 
theoretical results for heat transfer from the free disc, it provides 
a useful datum with which to compare new experimental data 
and to judge new experimental techniques. 

Part 1 of this two-part paper is concerned solely with heat 
transfer from the free disc. The relevant literature is reviewed in 
the second section, the experimental apparatus and data 
analysis are described in the third and fourth sections, and in the 
last section the heat transfer measurements are compared with 
theoretical values. In Part 2 (referred to below as II), the same 
heat transfer techniques are applied to a rotating cavity with a 
radial outflow of coolant. 

H e a t  t r a n s f e r  f r o m  t h e  f r e e  disc 

For the free disc, Dorfman 2 obtained solutions of the laminar 
and turbulent energy integral equations, from which the local 
Nusselt number, Nu, is given in the form 

Pr d 
Nu = A--T drr (r(AT)RT) (1) 

* Presently at H&N Computing Services, Eastbourne, Sussex, UK 

where 

R~'+2=(m+ 1)AT-lr-(m+a)AT-(m+Z)Re~ _f~ rm+2ATm+l dr (2) 

and for turbulent flow m= 1 and AT--~ 136 Pr °'5. The average 
Nusselt number is 

Nuav = 4PrRR (3) 

where RT is evaluated at r = b. 
For the special case of the "power-law profile" of the form 

AT=cr" (4) 
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Figure I An air-cooled gas turbine rotor 
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where c and n are constants, Equations 1 and 3 reduce to 

Nu = 0.0197(n + 2.6) 0.2 Pr°6Re~°8 (5) 

and 

Nuav = 0.0197(n + 2)(n + 2.6)- o. a pr0.6Re~.8 (6) 

For air (Pr=0.72) and for an isothermal disc (n--0) these 
equations simplify to 

Nu = 0.0196Re,~ °'8 (7) 

and 

Nuav = 0.0151Re,~ 8 (8) 

which agree, for Re~>2.4× 10 ~, with the data of Cobb and 
Saunders 3 and Dennis, Newstead, and Ede. 4 McComas and 
Hartnett 5 obtained a value of 0.0138 rather than 0.0151 for the 
constant of proportionality in their correlations for the average 
Nusselt number. 

For  air with a quadratic temperature rise (n = 2) on the disc, 
Equation 6 becomes 

Nuav = 0.0191Re,~ 8 (9) 

which gives values slightly lower than the correlation obtained 
by Owen, Haynes, and Bayley 6 for 2 x 105< Re, < 4 × 1 0 6 :  

Nuav = 0.0171Re~ 'al4 (10) 

It would appear therefore that, though not exact, Equation 1 
can provide a reasonable estimate of heat transfer from the free 
disc. 

For  high values of Re~, where frictional heating can be 
significant, it is necessary to use the adiabatic disc temperature, 
T~,ad, rather than the surface temperature, T~, in the definition of 
AT. It was suggested by Owen 7 that 

½RD2r 2 
Ts,ad = T~ + - -  (11) 

Cp 

where Too is the temperature of the fluid outside the boundary 
layer and, for moderate values of Pr, the recovery factor can be 
approximated by R ~ Pr t/3, such that 

AT= T -  Ts,ad (12) 

E x p e r i m e n t a l  a p p a r a t u s  

The rotat ing-disc rig 

The rig was designed for rotating-cavity tests in which two 
corotating discs and a rotating peripheral shroud formed the 
cavity and through which cooling air could be blown axially or 
radially. However, the rig could be readily converted to a rotor- 
stator configuration, in which one disc was stationary, or to a 
free disc, in which one disc and the shroud were removed. It is 
the latter configuration that is described below; the rotating- 
cavity rig is described in II. 

The rotating disc was of composite construction, details of 
which are given below, and was designed for rotation at speeds 
up to 5000 r/min. The overall thickness of the disc was 35 mm, 
and the inner and outer diameters were 152 and 950 ram. The 
disc was attached to one end of a hollow, horizontal, stainless- 
steel shaft which was 800 mm long and had inner and outer 
diameters of 88.6 and 101.3 mm. The shaft was mounted in two 
oil-lubricated ball-bearing assemblies fitted into steel housings 
and bolted to a cast-iron baseplate. The shaft was driven via 
pulleys, and toothed belts by a 90kW thyristor-controlled 
dc motor, the speed of which could be controlled and measured 
to an accuracy of 1 r/rain. A six-channel power slip-ring unit 
(with each ring capable of transmitting 20 A and 240 V) was 
mounted on the shaft between the bearings. A 60-channel 
instrumentation slip-ring unit (with silver rings and silver/ 
graphite brushes for thermocouple signals) was fitted on a 
separate shaft attached to one end of the main hollow shaft; the 
disc was mounted on the other end. 

The composite disc 

Despite the problems associated with electrical connections 
being exposed to accelerations of order 104 g, it was considered 
that built-in heaters would provide better control of the power 
and temperature distribution than that attainable from 
stationary radiant heaters. Two types of heaters were tested: the 
first type used insulated constantan wire inside a spirally 
grooved steel shim bonded to the disc; the second type used a 
glass-fiber "heater mat" (manufactured and fitted by Lucas 
Aerospace). The first type of heater was prone to faults and 

N o t a t i o n  

al ,  a2 Constants 
A T Nondirnensional parameter in 

boundary layer energy equation 
b Outer radius of disc 
c Constant 
C~ Specific heat at constant pressure 
k Thermal conductivity 
m Constant 
n Constant 
Nu = qr/kAT Local Nusselt number 
Nuav = qavb/kATav Average Nusselt number 
Pr Prandtl number 
q Heat flux 
q~ Heat flux generated at interface 
r Radial coordinate 
r i Inner radius of disc 
R Recovery factor 
Re~ = ~ r 2 / v  Local rotational Reynolds number 

Re~, = Db2/v 
RT 

T 
V 
x=r/b 
Z 
AT 

K 
V 

Subscripts 
ad 
a v  

0 
S 

(3O 

Disc rotational Reynolds number 
Nondimensional parameter in energy 
integral equation 
Temperature 
Voltage 
Nondimensional radial coordinate 
Axial coordinate 
Temperature difference between disc 
surface and surrounding fluid 
Thermal conductivity 
Kinematic viscosity 
Temperature 
Angular speed of disc 

Adiabatic value 
Radially weighted average value 
Reference value 
Surface of disc 
Free-stream value 
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Figure 2 Details of the composite disc. Thermocouplelocationsare 
shown by 1,2, 3, etc.; fluxmeters are fitted on the front face at 4, 8,. 
12, 16, and20  

failed to produce axisymmetrix heating; the second, which was 
successful, is described below. 

Referring to Figure 2, note that the composite disc was made 
from two steel discs ( k = 4 8 W / m K )  of thickness 9.5mm 
separated by a 13-mm thickness of Rohacell foam insulation 
(k=0.05 W/m K). The heater mat was laminated from eight 
annular layers of glass-fiber-reinforced epoxy resin 
(k = 0.27 W/m K) with plasma-sprayed-metal resistance-heating 
elements sandwiched in the middle. The resulting mat, which 
had inner and outer radii of 112 mm and 441 mm and an overall 
thickness of 1 ram, was bonded to the internal face of the 
inner steel disc. Inside the mat were five separate annular 
heaters, each with approximately the same area and resistance 
of 12Q. 

When bonded to the discs, the heater mat was capable of 
producing up to 24kW of power, and it could withstand 
temperatures up to 150°C continuously and accelerations up to 
15,000g. Current to the five heater circuits was supplied 
through the power slip-rings via radial conductors located 
inside the Rohacell insulation. The power to each heater, which 
was regulated by a thyristor controller, was measured by a 
calibrated electrodynamic wattmeter with an accuracy of 1 ~o 
f.s.d. (on the 5-kW range, the maximum error was 50 W). 

A "thermocouple mat" was bonded to each of the external 
faces of the composite disc. These mats were similar to the heater 
mat but were only 0.8 mm thick and did not contain heating 
elements. One reason for their use was that thermocouples and 
fluxmeters could be embedded in the disc surface without 
slotting the highly stressed steel discs. Another reason was that 
the temperature disturbance error can be reduced by matching 
the thermal conductivity of the adhesive bonding the 
thermocouples to that of the substrate. (The effects of such 
disturbance errors on the calculation of Nusselt numbers are 
discussed in Refs. 8 and 9.) 

Referring to Figure 2, note the following points. A peripheral 
spacer ring was fitted into grooves on the internal face of the two 
steel discs. From stress considerations, the ring was made from a 

lightweight aluminum alloy ("hiduminium" with a conductivity 
of k =  184 W/m K). The ring and the peripheral bolts used to 
clamp the discs together provided a thermal path between the 
two discs: this is discussed in greater detail in the next section. In 
addition, two circular grooves (used to locate the shrouds in the 
rotating-cavity tests) on the external face of the heated steel disc 
reduced the effective outer diameter for the free-disc tests to 
443 mm. For  these tests, the central hole was sealed with a glass- 
fiber mat bonded to the disc so as to be flush with the 
thermocouple mat on the front face of the disc. 

I ns t rumen ta t ion  

A total of 23 thermocouples was embedded in the thermocouple 
mat on the front face and 13 in the back face of the disc. In 
addition, three thermocouples were attached to the periphery of 
the disc, and five were embedded in the heater mat. The copper- 
constantan thermocouples were made from enameled wires of 
0.15 mm diameter which were cemented into grooves in the mat 
using Araldite epoxy resin. 

Five fluxmeters, manufactured by RDF Corporation, were 
embedded at the radially weighted midpoints of the heaters in 
the thermocouple mat on the front face. Each fluxmeter was 
made from a thin foil thermopile encapsulated in polyimide film. 
The approximate size was 17mm x 6mm x 0.3mm, and the 
nominal output was 0.4 #V m 2 W -  1. The fluxmeters were fitted 
with the longer side in the tangential direction on the disc: for 
axisymmetric heating, this minimized errors due to spatial 
variation of heat flux. 

The wires from the thermocouples and fluxmeters were 
brought out to a "connecting" ring, fitted with Klippon 
terminal blocks, which was attached to the back of the disc. The 
thermocouple leads were joined to copper wires at this point, 
and the temperature of the terminal blocks (used as the "cold- 
junction" reference) was measured by a semiconductor 
temperature sensor (adjusted to give an output of 100 mV K -  1 ) 
fixed to the ring. The signals from the sensor, thermocouples, 
and fluxmeters were taken out through the instrumentation slip 
rings and were measured by a Solartron data logger with an 
accuracy of 1 #V (which corresponds to approximately 0.03°C 
for copper-constantan thermocouples). 

D a t a  a n a l y s i s  

Only the salient features of the data analysis are presented 
below; the reader is referred to Northrop t° for more details. 

Data acquisition 
The Solartron data logger was interfaced to a P D P l l / 3 4  
minicomputer, and the raw data from the thermocouples, 
temperature sensors, and fluxmeters were stored on magnetic 
disc for subsequent analysis. Typically, 100 sets of readings were 
made at a rate of 33 readings per second, and ensemble averages 
were used to calculate the temperatures for each thermocouple. 
The 95 9/o confidence intervals of the temperatures were usually 
within 0.2°C of the average readings; data that were more than 
three standard deviations from the average were rejected. 

The averaged surface temperatures on the disc were fitted 
radially using VSMOOTH, a cubic-spline-smoothing 
subroutine that used statistical techniques to optimize the 
location and number of "knots" (see Ref. 11). The smoothed 
temperatures and the measured heater powers were then 
used as boundary conditions for the solution of Laplace's 
equation, as discussed below. 
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Solut ion of Laplace's equation 

The solution of Laplace's equation has been used to obtain 
estimates of the average heat flux from a radiantly heated 
rotating disc (see Refs. 6, 12, and 13). Accurate local fluxes are 
difficult to achieve unless the local heat input can be determined 
precisely. This is difficult with radiant heating, but is easier with 
the built-in electrical heaters used in the current experiments. If 
the rotating disc could be perfectly insulated on its back face and 
periphery, then the local heat flux could be determined directly 
from the measured internal heater power. Since perfect 
insulation is impossible to achieve, it is necessary to solve 
Laplace's equation to determine the local flux. 

For axisymmetric heating, Laplace's equation can be written 
in cylindrical polar coordinates as 

632T 1 t3T t~2T 
c3r2 + r  ~ r  + ~ - = 0  (13) 

Figure 3 shows the simplified representation of the composite 
disc that was used in the present analysis. Laplace's equation 
was separately applied to the two steel discs (sections labeled 1 
and 3) and to the Rohacell insulation (section 2). The heater mat 
was modeled as a plane heat source on the boundary of sections 
1 and 2, and allowance was made for the thermocouple mats on 
the external faces of sections 1 and 3. Details of the boundary 
conditions are given below. 

Boundary  condi t ions  at  the interfaces be tween  the sect ions.  The 
continuity of heat flux flowing axially across the interface at 
z = z0, say, between the two materials of respective conductivities 
k and x and temperatures T and z, implies that 

/ a T \  / ~ z \  

where q~ is the heat flux generated at the interface. For the 
interface between sections 1 and 2, q~ is determined by dividing 
the measured power input to a heater by the area of that heater; 
for all other interfaces, qG is zero. Continuity of temperature at 
all interfaces (assuming no contact resistance) necessitates that 

T = r  at z = z  o (15) 

Boundary  condi t ions  on the f ron t  and back  Jaces : z = 0 and z = L.  
For these faces, the smoothed surface temperatures were used as 
boundary conditions. 

Boundary  condit ions Jbr  the inner and outer  radii: r = r i and r = r o. 
For the inner radius, the one-dimensional assumption (used in 
Refs. 12 and 13) was used, such that 

(t32T~ = [ !  ~ (~-~-)1, = 0 (16, 

Since the periphery of the disc was insulated with Rohacell, the 
adiabatic condition was used at r = %, where 

__0 .7 ,  
~rr ,o 

The  spacer  ring. The high conductivity (k = 184 W/m K) of the 
hiduminium spacer ring created a thermal path between the two 
steel discs. Since the contact resistance between the ring and the 
discs was unknown, an empirical "effective conductivity" was 
used. From numerical "experiments," a value of 6 W/m K was 
chosen: this value, which was in the range 5 to 22W/m K 
obtained from the data of Lewis and Perkins, 14 produced results 
consistent with Doffman's theory (Equation 1). For rib < 0.8, a 
variation in the effective conductivity from 5 to 22 would 
typically alter the computed local Nusselt numbers by less than 
5 ~ ;  for rib > 0.8 (and for the radially weighted average Nusselt 
numbers), the effect is likely to be greater. 

Computat ion of heat f lux 

Using the boundary conditions stated above, Laplace's 
equation was solved numerically. A total of 9 axial and 17 radial 
grid points was used, and Equation 13 and the boundary 
conditions were discretized using second-order Taylor-series 
approximations. The resulting system of equations was solved 
by Gaussian elimination to produce temperatures at the internal 
nodes. 

The local surface heat fluxes were computed from a second- 
order difference formula, and the local Nusselt numbers were 
calculated from the definitions given in the notation list. The 
radially weighted average heat flux was computed from the local 
values by Simpson's rule. As a check on the numerical accuracy, 
the computed total heat flow rate from the external surfaces of 
the disc was compared with the measured power input. For 
most tests, the error was less than 1%. This numerical heat 
balance cannot, however, be regarded as a physical balance. 

No allowance was made for radiation from the disc surface to 
the surroundings. Although radiation had only a relatively 
small effect when convective heat transfer was high (at large 
Reynolds numbers), it could be significant at the smaller values 
of R%. Estimates of radially weighted blackbody radiation (the 
emissivity of the thermocouple mat was nearly unity) from the 
disc suggests that the absolute difference between the value of 
Nuav obtained from the conduction solution and the true value 
should be less than 150. 

H e a t  t r a n s f e r  m e a s u r e m e n t s  

Radial temperature distr ibution 

Varying the power input to each of the five heaters made it 
possible to produce different radial temperature distributions on 
the front face of the disc. Examples offour of these distributions, 
for R% -'~ 106, are shown in Figure 4. The temperature difference 
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Figure 4 Examples of the four temperature profiles tested: x, 
experimental data; - - ~  Equation 4 

smaller range of Reynolds numbers than those in Figure 5. 
Again, bcaring in mind the above comments about the effects of 

rad ia t ion ,  free convection and boundary conditions, the 
agreement between the measured values and Equation 1 is 
reasonable. 

Fluxmeter measurements. The fluxmeters had nonlinear 
characteristics, and in situ calibration was carried out to 

3000 / 1 4  

/ 
/ 

,~-,~ , 1 3  

 00o 

00.2 0-4 0'6 0"8 1.0 X 

AT can be approximated by a power law of the form given in 
Equation 4 with values of n (obtained from least-squares fits) of 
0.1, 0.4, 0.6, and -0 .2 .  Although they do not give an accurate 
representation of the measured temperature, the power-law 
profiles do provide a convenient way of distinguishing the four 
different temperature distributions. 

Local  Nussel t  numbers 

Figure 5 The radial variation of local Nusselt numbers, obtained 
from the conduction solution, for n-~0.1; , conduction 
solution; - - - ,  Equation 1 
Re~/106 0.05 0.07 0.14 0.28 0.55 0.82 1.1 
Conduction solution x [] 0 =- -= + • 
Equation 1 1 2 3 4 5 6 7 

ReJ106 1.4 1.6 1.9 2.1 2.4 2.7 3.2 
Conduction solution • $ . .  . ,  ~ .i~. B" 
Equation 1 8 9 10 11 12 13 14 

The conduction solution. Figures 5 to 8 show the radial 
variation of the local Nusselt numbers for each of the four 
temperature distributions referred to above. The measured 
values were obtained using the conduction solution described in 
the previous section; the theoretical curves were calculated from 
Equation 1. The turning point in the measured Nusselt numbers 
at x ~ 0.9 is caused by the assumed conditions at the disc tip (see 
the subsection on the solution of Laplace's equation), and 
measured values for x > 0.9 should be disregarded. 

Figure 5 shows the results for a temperature distribution 
approximated by the form Toc r °'1 (that is, n = 0.1 in Equation 
4). For  0.4 < x < 0.9, the measured Nusselt numbers are in good 
agreement with the theoretical curves for 0.28~< Re~/106 -..< 3.2. 
At lower values of R% and smaller values of x, where the Nusselt 
numbers are relatively small, the effects of radiation and free 
convection can be significant. These effects were estimated for 
the results at R% = 5 x 104, where the calculated radiation losses 
accounted for approximately half the measured heat flux; 
allowing for both radiation and free convection, the difference 
between the maximum measured Nusselt number and the 
theoretical value was reduced from over 200 to approximately 
50. Considering all the effects referred to above, the agreement 
between the measured and the theoretical local Nusselt numbers 
is considered to be acceptable. 

The tests for n ~ 0.4, 0.6, and -0 .2 ,  the results of which are 
shown in Figures 6, 7, and 8, respectively, were conducted over a 
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Figure 6 The radial variation of local Nusselt numbers, obtained 
from the conduction solution, for n ~ - 0.4: , conduction solution; 

• Equation 1 
Re~/10 s 0.28 0.55 0.83 1.1 2.7 3.1 
Conduction solution x D 0 ~ .~ + 
Equation 1 1 2 3 4 5 6 
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Figure 7 The radial variation of local Nusselt numbers, obtained 
from the conduction solutions, for n-~0.6: - - ,  conduction 
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Figure 8 The radial variation of local Nusselt numbers, obtained 
from the conduction solution, for n-~-O.2:  - - - ,  conduction 
solution; - - ,  Equation 1 
Re$/ lO 6 0.14 0.27 0.55 1.1 2.7 
Conduction solution x 0 0 > 
Equation 1 1 2 3 4 5 

determine the relationship between the output voltage Vand the 
heat flux q. It was assumed that q = a~ V+ a2 V 2, where az and a2 
are temperature-dependent constants. For each fluxmeter, the 
values of az and a2 were chosen from a least-squares fit to the 
values of flux obtained from the conduction solution; further 
details are given in Ref. 10. Although not completely 
independent, the fluxmeter results presented below provide an 
alternative picture to that obtained from the conduction 
solution. 

Figures 9 to 12 show the comparison between the local 
Nusselt numbers determined from the calibrated fluxmeters and 
the theoretical results calculated from Equation 1. Comparing 
Figure 9 with Figure 5 shows, not surprisingly, that the 

fluxmeter results agree with the theoretical curves over similar 
ranges of x and Re~. However, unlike the conduction solution, 
the fluxmeters do not suggest that there is a turning point at 
x=0.9, although there are insufficient experimental points to 
confirm this. The agreement between the fluxmeters and the 
theoretical curves is also reasonable for the other temperature 
profiles, as can be seen in Figures 10 to 12. 

Average  Nussel t  numbers  

Figure 13 shows the variation in the average Nusselt number 
with rotational Reynolds number for each of the four different 
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Figure 9 The radial variation of local Nusselt numbers, obtained 
- - - ,  Equation 1 
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from the calibrated fluxmeters, for n-~O.l: 
R e J l O  6 0.049 0.070 0.14 
Fluxmeter x n 0 
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Figure 10 The radial variation of local Nusselt numbers, obtained 
from the calibrated fluxmeters, for n-~O.4: - , Equation 1 
Re~/ lO 6 0.28 0.55 0.83 1.1 2.7 3.1 
Fluxmeter x n ¢ > < + 
Equation 1 1 2 3 4 5 6 
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Figure 11 The radial variation of local Nusselt numbers, obtained 
from the calibrated fluxmeters, for n~-O.6: - - ,  Equation 1 
Re$/ lO 6 0.28 0.55 0.83 1.1 1.4 1.6 1.7 
Fluxmeter x 13 0 t> -~ + -~- 
Equation 1 1 2 3 4 5 6 7 
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Figure 12 The radial variation of local Nusselt numbers, obtained 
from the calibrated fluxmeters, for n ~ - -0 .2 :  - - - ,  Equation 1 
Re$/lO 6 0.14 0.27 0.55 1.1 2.7 
Fluxmeter x [] 0 t> .~ 
Equation 1 1 2 3 4 5 
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Figure 13 The variation of average Nusselt number with rotational 
Reynolds number for four different temperature profiles: - -  
Equation 3 

conditions) and from fluxmeters mounted in one of the surfaces 
of the disc. Apart from near the center (where radiation and free 
convection effects were significant) and near the outer part of the 
disc (where the conduction solution was inaccurate), the 
measured local and average Nusselt numbers were in reasonable 
agreement with Dorfman's 2 solution of the turbulent energy 
integral equation over a wide range of rotational Reynolds 
numbers. 

Having validated the experimental technique on a reasonably 
well-understood test case, we use it in II to measure the Nusselt 
numbers in a rotating cavity with a radial outflow of cooling air. 

temperature distributions. Owing to the inaccuracies in the 
measured fluxes at low values of the Nusselt number, only the 
results for turbulent flow are shown. The experimental values 
were obtained from the integrated conduction solution, and the 
theoretical curves were calculated from Equation 3. 

The experimental results were not corrected for radiation, but 
the agreement between the experimental and theoretical values 
is, in the main, good. Since the error in the conduction solution 
for x>0 .9  reduces the experimental average Nusselt number 
and radiation increases it, it would appear that these two effects 
are approximately self-canceling. 

C o n c l u s i o n s  

Free-disc heat transfer tests have been conducted with a disc of 
950 mm diameter rotating at speeds up to 3000 r/min in air. By 
means of five electric heaters embedded inside the disc, its radial 
temperature distribution could be altered. Tests were carried 
out for four different distributions: the temperature increased 
with radius in three of the distributions and decreased in the 
fourth. The heat fluxes were obtained from the numerical 
solution of Laplace's conduction equation (using the measured 
surface temperatures and electrical power input as boundary 

References 

1 Owen, J. M. Fluid flow and heat transfer in rotating disc systems. 
In: Heat and Mass Transfer in Rotating Machinery, eds. Metzger, 
D. E. and Afgan, N. H., Hemisphere, Washington, 1984 

2 Dorfman, L. A. Hydrodynamic resistance and the heat loss of 
rotating solids. Oliver and Boyd, Edinburgh, 1963 

3 Cobb, E. C. and Saunders, O. A. Heat transfer from a rotating 
disk. Proc. R. Soc. Lond., 1956, A236, 343 

4 Dennis, R. W., Newstead, C., and Ede, A. J. Heat transfer from a 
rotating disc in cross-flow. Heat Transfer 1970, 4th Int. Heat 
Transfer Conf., Versailles, III, F.C.7.1 

5 McComas, S. T. and Hartnett, J. P. Temperature profiles 
associated with a single disk rotating in still air. Heat Transfer 
1970, 4th Int. Heat Transfer Conf., Versailles, III, F.C.7.7 

6 Owen, J. M., Haynes, C. M., and Bayley, F. J. Heat transfer from 
an air-cooled rotating disc. Proc. R. Soc. Lond., 1974, A336, 453 

7 Owen, J. M. The Reynolds analogy applied to flow between a 
rotating and stationary disc. Int. J. Heat Mass Transfer, 1971, 
14, 451 

8 Owen, J. M. On the computation of heat transfer coefficients 
from imperfect temperature measurements. J. Mech. Engng Sci., 
1979, 21,323 

9 Long, C. A. The effects of thermocouple disturbance errors on 
local heat transfer coefficients. Test and Transducer Conference, 
Wembley, London, 1985, 3, 73 

Int. J. Heat and Fluid Flow, VoI. 9, No. 1, March 1988 25 



Heat transfer measurements in rotating-disc systems~1: A. Northrop and J. M. Owen 

10 Northrop, A. Heat transfer in a cylindrical rotating cavity. 
D.Phil. thesis, University of Sussex, England, 1984 

11 Powell, M. J. D. Curve fitting by splines in one variable. In: 
Numerical Approximations to Functions and Data, ed. Haynes, 
J. G., Athlone Press, University of London, 1970 

12 Owen, J. M. and Bilimoria, E. D. Heat transfer in rotating 
cylindrical cavities. J. Mech. Engng Sci., 1977, 17, 175 

13 

14 

Owen, J. M. and Onur, H. S. Convective heat transfer in a 
rotating cylindrical cavity. J. Engng Power, 1983, 195, 265 
Lewis, D. V. and Perkins, H. C. Heat transfer at the interface of 
stainless steel and aluminium--the influence of surface 
conditions on the directional effect. Int. J. Heat Mass Transfer, 
1968, 11, 1371 

26 Int. J. Heat and Fluid Flow, Vol. 9, No. 1, March 1988 


